
Web Intelligence: Web-Based BISC Decision 
Support System (WBISC-DSS) 

Gamil Serag-Eldin, Souad Souafi-Bensafi, Jonathan K. Lee, Wai-Kit Chan, 
Masoud Nikravesh 
 
BISC Program, Computer Sciences Division, EECS Department 
University of California, Berkeley, CA 94720, USA 
Email: nikravesh@cs.berkeley.edu 
Tel: (510) 643-4522 
Fax: (510) 642-5775 

 
 
 
 

Abstract: Most of the existing search systems (software) are modeled using crisp 
logic and queries. In this chapter, we introduce fuzzy querying and ranking as a 
flexible tool allowing approximation where the selected objects do not need to ex-
actly match the decision criteria resembling natural human behavior. The model 
consists of five major modules: the Fuzzy Search Engine, Application Templates, 
the User Interface, the Database, and Evolutionary Computing. The system is de-
signed in a generic form to accommodate more diverse applications and to be de-
livered as stand-alone software to academia and bus inesses. 

1 Introduction 

Searching database records and ranking the results based on multi-criteria queries 
is central for many database applications used within organizations in finance, 
business, industry and other fields. Most of the available systems (software) are 
modeled using crisp logic and queries, which results in rigid systems with impre-
cise and subjective processes and results. In this chapter we introduce fuzzy que-
rying and ranking as a flexible tool allowing approximation where the selected ob-
jects do not need to exactly match the decision criteria resembling natural human 
behavior (Nikravesh 2001b; Nikravesh and Azvine 2002; Nikravesh 2003a). 

 
The model consists of five major modules: the Fuzzy Search Engine (FSE), 

Application Templates (AT), the User Interface (UI), the Database (DB) and Evo-
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lutionary Computing (EC). We developed the software with many essential fea-
tures.  It is built as a web-based software system that users can access and use 
over the Internet. The system is designed to be generic so that it can run different 
application domains. To this end, the Application Template module provides in-
formation of a specific application as attributes and properties, and serves as a 
guideline structure for building a new application. 

The Fuzzy Search Engine (FSE) is  the core module of the system.  It has been 
developed to be generic so that it would fit any application. The main FSE com-
ponent is the query structure, which utilizes membership functions, similarity 
functions and aggregators. 

Through the user interface, a user can enter and save his profile, input criteria 
for a new query, run different queries and display results. The user can manually 
eliminate the results he disapproves of or change the ranking according to his pref-
erences. 

The Evolutionary Computing (EC) module monitors ranking preferences of the 
user’s queries.  It learns to adjust to the intended meaning of the user’s prefe r-
ences. 

 
We present our approach with three important applications: ranking (scoring), 

which has been used to make financing decisions concerning credit cards, car and 
mortgage loans; college admissions where hundreds of thousands of applications 
are processed yearly by U.S. universities; and date matching as one of the most 
popular internet programs. Even though we implemented three applications, the 
system is designed in a generic form to accommodate more diverse applications 
and to be delivered as stand-alone software to academia and businesses. 

2 Model framework 

The DSS system starts by loading the application template, which consists of vari-
ous configuration files for a specific application (see section 4) and initializing the 
database for the application (see section 6), before handling a user’s requests, (see 
figure 1). 

 
Once the DSS system is initialized, users can enter their own profiles in the 

user interface or make a search with their preferences. The control unit of the sys-
tem handles these requests. The control unit converts user input into data objects 
that are recognized by the DSS system. Based on the request types, it forwards 
them to the appropriate modules. 
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If the user wants to create a profile, the control unit will send the profile data 

directly to the database module, which stores the data in the database for the 
application. If the user wants to query the system, the control unit will direct the 
user’s preferences to the Fuzzy Search Engine, which queries the database (see 
section 3). The query results will be sent back to the control unit and displayed to 
the users. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 The BISC-DSS general framework 

3 Fuzzy Engine 

During the recent years, applications of fuzzy logic and the internet from web data 
mining to intelligent search engine and agents for internet applications have 
greatly increased (Nikravesh 2002; Nikravesh et al. 2002, 2003a, 2003b, 2003c; 
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Nikravesh and Choi 2003; loia et al. 2002, 2003; Nikravesh and Azvine 2001, 
2002; Takagi et al. 2002a, 2002b). 

3.1 Fuzzy Query, Search and Ranking 

To support generic queries, the fuzzy engine has been designed to have a tree 
structure. There are two types of nodes in the tree, category nodes and attribute 
nodes, as depicted in figure 2. While multiple category levels are not necessary, 
they are designed to allow various refinements of the query through the use of the 
type of aggregation of the children. Categories act only to aggregate the lower lev-
els. The attribute nodes contain all the important information about a query. They 
contain the membership functions for the fuzzy comparison as well as the use of 
the various aggregation methods to compare two values. 

 
The flow of control in the program when a query is executed is as follows. The 

root node receives a query formatted as a fuzzy data object and is asked to com-
pare the query fuzzy data to a record from the database also formatted as a fuzzy 
data object. At each category node, the compare method is called for each child 
and then aggregated using an aggregator object. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  The Fuzzy search engine tree structure. 
 

 
The attribute  nodes handle the compare method slightly different than the cate-

gory nodes. There are two different ways attributes may be compared. The attrib-
ute nodes contain a list of membership functions comprising the fuzzy set. The 
degrees of membership for this set are passed to the similarity comparator object, 
which currently has a variety of different methods to calculate the similarity be-
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tween the two membership vectors. In the other method, the membership vector is  
created by having full me mbership to a single membership function specified in 
the fuzzy data object, but no membership value for the other functions (Sugeno 
1974).   
 

The resulting comparison value returned from the root node is assigned to the 
record. The search request is then added to a sorted list ordered by this ranking in 
descending value. Each of the records from the database is compared to the query 
and the results are returned. For certain search criteria, it may be desirable to have 
exact values in the query. For such criteria, the database is used to filter the re-
cords for comparison. 

3.2 Membership function 

Currently there are three membership functions implemented for the Fuzzy En-
gine. A generic interface has been created to allow several different types of 
membership functions to be added to the system (Grabisch et al 2000). The three 
types of membership functions in the system are: Gaussian, Triangular and Trape-
zoidal. These functions have three main points, for the lower bound, upper bound 
and the point of maximum membership. For other functions, optional extra points 
may be used to define the shape (an extra point is required for the trapezoidal 
form). 

4 Application template 

The DSS system is designed to work with different application domains.  The 
application template is a format for any new application we build; it contains data 
of different categories, attributes and membership functions of that application.  
The application template module consists of two parts the application te mplate 
data file, and the application template logic. 

 
The application template data file specifies all the membership functions, at-

tributes and categories of an application. We can consider it as a configuration 
data file for an application. It contains the definition of membership functions, at-
tributes and the relationship between them. 

 
The application template logic parses and caches data from the data file so that 

other modules in the system can have faster access to definitions of membership 
functions, attributes and categories. It also creates a tree data structure for the 
fuzzy search engine to transverse. Figure 3 shows part of the sample configuration 
file from the Date Matching application. 
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Figure 3 Template of the date matching application 

############################################################################## 
#This is a properties file for membership definition. We should specify  
#the following properties for an attribute:  
# -  A unique identifier for each defined membership function. 
# -  A type from the following: {Gaussian, Triangle, Trapezoid} 
# -  Three points: Lowerbound, Upperbound, Maximum 
# -  Optional point: Auxillary Maximum 
# Format: 
# <MF_Name>.membershipFunctionName = <MF_Name>  
# <MF_Name>.membershipFunctionType = {Gaussian/Triangle/Trapezoid} 
# <MF_Name>.lowerBound             = lowerBoundValue 
# <MF_Name>.upperBound             = upperBoundValue 
# <MF_Name>.maxValue               = maxValue 
# <MF_Name>.optionPoint            = pt1, pt2, pt3 ... 
#  
############################################################################# 

 

 ############################################################################# 
# 
# Gender Membership Functions 
# 
male.membershipFunctionName = male 
male.membershipFunctionType = Triangle 
male.lowerbound             = 1 
male.upperbound             = 1 
male.maxValue               = 1 
 
female.membershipFunctionName = female 
female.membershipFunctionType = Triangle  
female.lowerbound             = 0 
female.upperbound             = 0 
female.maxValue               = 0 
# 
# Age Membership Functions 
# 
young.membershipFunctionName = young 
young.membershipFunctionType = Triangle 
young.lowerbound             = 0 
young.upperbound             = 35 
young.maxValue               = 20 
 
middle.membershipFunctionName = middle 
middle.membershipFunctionType = Triangle  
middle.lowerbound             = 20 
middle.upperbound             = 50 
middle.maxValue               = 35 
 
old.membershipFunctionName = old  
old.membershipFunctionType = Triangle 
old.lowerbound             = 35 
old.upperbound             = 100 
old.maxValue               = 50 
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5 User interface 

It is difficult to design a generic user interface that suits different kind of applica-
tions for all the fields. For example, we may want to have different layouts for 
user interfaces for different applications. To make the DSS system generic while 
preserving the user friendliness of the interfaces for different applications, we de-
veloped the user interfaces into two parts.  

 
First, we designed a specific HTML interface for each application we devel-

oped. Users can input their own profiles, make queries  by specifying preferences 
for different attributes. Details for the DSS system are encapsulated from the 
HTML interface so that the HTML interface design would not be constrained by 
the DSS system.  
 

The second part of our user interface module is a mapping between the parame-
ters in the HTML files and the attributes in the application template module for the 
application. The input mapping specifies the attribute names to which each pa-
rameter in the HTML interface corresponds. With this input mapping, a user inter-
face designer can use input methods and p arameter names freely.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 User interface data flow 

6 Database (DB) 

The database module is responsible for all the transactions between the DSS sys-
tem and the database. This module handles all queries or user profile creations 
from the Fuzzy Engine and the Control Unit respectively. For queries from the 
Fuzzy Search Engine, it retrieves data from the database and returns it in a data 
object form. Usually queries are sets of attribute values and their associated 
weights. The database module returns the matching records in a format that can be 
manipulated by the user such as eliminating one or more record or changing their 
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order. To create a user profile, it takes data objects from the Control Unit and 
stores it in the database. There are three components in the DB module: the DB 
Manager (DBMgr), the DB Accessor (DBA) and DB Accessor Factory (DBA Fac-
tory). 

6.1 DB Manager  

The DB Manager is accountable for two things: setting up database connections 
and allocating database connections to DB Accessor objects when needed. During 
the initialization of the DSS system, DB Manager loads the right driver, which is 
used for the communications between the database and the system. It also supplies 
informa tion to the database for authentication purposes (e.g. username, password, 
path to the database etc). 

 
 
 
 
 

 
 

 

 

 
Figure 5 Database module components  

6.2 DB Accessor Factory 

The DB Accessor Factory creates DB Accessor objects for a specific applic ation. 
For example, if the system is running the date matching application, DB Accessor 
Factory will create DB Accessor objects for the date matching application. The 
existence of this class serves the purpose of using a generic Fuzzy Search Engine. 

6.3 DB Accessor 

DB Accessor is responsible for storing and getting user profiles to and from the 
database. It also saves queries from users to the database so that other modules in 
the system can analyze user’s preferences. It is the component that queries the da-
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tabase and wrap result from the database into data objects that are recognized by 
our application framework. 

7 Measure of association and fuzzy similarity 

As in crisp query and ranking, an important concept in fuzzy query and ranking 
applications is the measure of association or similarity between two objects in 
consideration (Murofushi and Sugeno 1989).  For example, in a fuzzy query ap-
plication, a measure of similarity between a query and a document, or between 
two documents, provides a basis for determining the optimal response from the 
system (Fagin 1998).  In fuzzy ranking applications, a measure of similarity be-
tween a new object and a known preferred (or non-preferred) object can be used to 
define the relative goodness of the new object.  Most of the measures of fuzzy 
association and similarity are simply extensions from their crisp counterparts.  
However, because of the use of perception-based and fuzzy information, the com-
putation in the fuzzy domain can be more powerful and more complex.  This sec-
tion gives a brief overview of various measures of fuzzy association and similarity 
and various types of aggregation operators involved, along with the description of 
a simple procedure of utilizing these tools in real applications (Detyniecki 2000). 

 
Various definitions of similarity exist in the classical, crisp domain, and many 

of them can be easily extended to the fuzzy domain.  However, unlike in the 
crisp case, in the fuzzy case the similarity is defined on two fuzzy sets.  Suppose 
we have two fuzzy sets A and B with membership functions µA(x) and µB(x), re-
spectively.  The arithmetic operators involved in the fuzzy similarity measures 
can be treated using their usual definitions while the union and the intersection 
operators need to be treated specially.  It is important for these operator pairs to 
have the following properties:  (1) conservation, (2) monotonicity, (3) commuta-
tivity, and (4) associativity.  It can be verified that the triangular norm (T-norm) 
and triangular co-norm (T-conorm) (Detyniecki 20001; Nikravesh 2001b; Mizu-
moto 1989; Fagin 1998; Grabisch 1996) conform to these properties and can be 
applied here.  A detailed survey of some commonly used T-norm and T-conorm 
pairs along with other aggregation operators can be find at (Nikravesh et al 
2003c). 

Having introduced a variety of tools that are required to evaluate fuzzy associa-
tion/similarity between two objects, a simple algorithm in pseudo code is provided 
below to illustrate how these machineries can be used in a practical implementa-
tion. 

 
Input: two objects A and B 
 A: N discrete attributes 
 For the ith attribute, Ai is an array of length Mi, where Mi is the number of pos-

sible linguistic values of the ith attribute. 
 i.e. each Aj

i , i in 1,…,N and j in 1,…,M i , gives the degree of A’s ith attribute 
having jth linguistic value. 
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 B: similar to A with the same dimensions. 
 
Other parameters: 
 AggregatorType 
 SimilarityType 

TNormType 
 OptionalWeights 
 
Output: An aggregated similarity score between A and B 
 
Algorithm: 
 For each i=1 to N 
  SABi = ComputeSimilarity(Ai , B i  ,SimilarityType, TNormType) 
 End 
 Return Aggregate(SAB, AggregatorType, OptionalWeights) 
 
 
 Sub ComputeSimilarity(X, Y, SimilarityType, TNormType) 
  Switch SimilarityType: 
  Case SimpleMatchingCoefficient: 
   Return |X n Y| 
   
  Case CosineCoefficient: 
   Return |X n Y| / (|X|½ |Y|½) 
 
  Case OverlapCoefficient: 
   Return |X n Y| / min(|X|, |Y|)  
   

Case Jaccard’s Coefficient: 
   Return |X n Y| / (|X ∪ Y|) 
   

Case Dice’s Coefficient: 
   Return 2|X n Y| / (|X| + |Y|) 
  … 
 End 
 
 Sub Aggregate(S, AggregatorType, OptionalWeights) 
  Switch AggregatorType: 
  Case Min: 
   Return min(S) 
  Case Max: 
   Return max(S) 
  Case Mean: 
   Return mean(S) 
  Case Median: 
   Return median(S) 
  Case WeightedAverage: 
   Return WeightedAverage(S, OptionalWeights) 
  Case OrderedWeightedAverage: 
   Return OrderedWeightedAverage(S, OptionalWeights) 
  Case ChoquetIntegral: 
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   Return ChoquetIntegral(S, OptionalWeights) 
  Case SugenoIntegral: 
   Return SugenoIntegral(S, OptionalWeights) 
  … 
 End 

 
This algorithm takes as input two objects, each with N discrete attributes.  

Similarity scores between the two objects are first computed with respect to each 
attribute separately, using a specified similarity metric and T-norm/conorm pair.  
As described previously, the computation of a similarity score with respect to an 
attribute involves a pair wise application of the T-norm or T-conorm operators on 
the possible values of the attribute, followed by other usual arithmetic operation 
specified in the similarity metric (Yager 1988). Finally, an aggregation operator 
with appropriate weights is used to combine the similarity measures obtained with 
respect to different attributes. 

 
In many situations, the controlling parameters, including the similarity metric, 

the type of T-norm/conorm, the type of aggregation operator and associated 
weights, can all be specified based on the domain knowledge of a particular appli-
cation.  However, in some other cases, it may be difficult to specify a priori an 
optimal set of parameters.  In those cases, various machine learning methods can 
be employed to automatically “discover” a suitable set of parameters using a su-
pervised or unsupervised approach.  For example, the Genetic Algorithm (GA) 
and DNA-based computing, as described in later sections, can be quite effective. 

8 Implementation - Fuzzy Query and Ranking 

In this section, we introduce fuzzy query and fuzzy aggregation for credit scoring, 
university admissions and date matching. 

8.1 Credit Scoring 

Credit scoring was first developed in the 1950's and has been used extensively in 
the last two decades. In the early 1980's, the three major credit bureaus, Equitax, 
Experian, and TransUnion worked with the Fair Isaac Company to develop ge-
neric scoring models that allow each bureau to offer an individual score based on 
the contents of the credit bureau's data. FICO is used to make billions of financing 
decisions each year serving a 100 billion dollar industry. Credit scoring is a statis-
tical method to assess an individual's credit worthiness and the likelihood that the 
individual will repay his/her loans based on their credit history and current credit 
accounts. The credit report is a snapshot of the credit history and the credit score is 
a snapshot of the risk at a particular point in time. Since 1995, this scoring system 
has made its biggest contribution in the world of mortgage lending. Mortgage in-
vestors such as Freddie Mac and Fannie Mae, the two main government-chartered 
companies that purchase billion of dollars of newly originated home loans annu-
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ally, endorsed the Fair Isaac credit bureau risk, ignored subjective considerations, 
but agreed that lenders should also focus on other outside factors when making a 
decision.  

When you apply for financing, whether it's a new credit card, car or student 
loan, or a mortgage, about 40 pieces of information from your credit card report 
are fed into a model (Nikravesh et al 2003c). This information is categorized into 
the following five categories with different level of importance (% of the score): 

 
• Past payment history (35%) 
• Amount of credit owed (30%) 
• Length of time credit established (15%)  
• Search for and acquisition of new credit  (10%) 
• Types of credit established (10%) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. A snapshot of the variable input for credit scoring software. 
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When a lender receives your Fair Isaac credit bureau risk score, up to four 
"score reason codes" are also delivered. These explain the reasons why your score 
was not higher.  Followings are the most common given score reasons (Fair 
Isaac); 

• Serious delinquency 
• Serious delinquency, and public record or collection filed 
• Derogatory public record or collection filed 
• Time since delinquency is too recent or unknown 
• Level of delinquency on accounts  
• Number of accounts with delinquency 
• Amount owed on accounts 
• Proportion of balances to credit limits on revolving accounts is too high 
• Length of time accounts have been established 
• Too many accounts with balances   

  
By analyzing a large sample of credit file information on people who recently 

obtained new credit, and given the above information and that contained in Table 
1, a statistical model has been built. The model provides a numerical score de-
signed to predict your risk as a borrower. Credit scores used for mortgage lending 
range from 0 to 900 (usually above 300). The higher your score, the less risk you 
represent to lenders. Most lenders will be happy if your score is 700 or higher. 
You may still qualify for a loan with a lower score given all other factors, but it 
will cost you more.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. A snapshot of the software developed for credit scoring. 
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Given the factors presented earlier, a simulated model has been developed. A 
series of excellent, very good, good, not good, not bad, bad, and very bad credit 
scores have been recognized (without including history). Then, fuzzy similarity 
and ranking have been used to rank the new user and define his/her credit score. In 
the inference engine, the rules based on factual knowledge (data) and knowledge 
drawn from human experts (inference) are combined, ranked, and clustered based 
on the confidence level of human and factual support. This information is then 
used to build the fuzzy query model with associated weights. In the query level, an 
intelligent knowledge-based search engine provides a means for specific queries. 
Initially we blend traditional computation with fuzzy reasoning. This effectively 
provides validation of an interpretation, model, hypothesis, or alternatively, indi-
cates the need to reject or reevaluate. Information must be clustered, ranked, and 
translated to a format amenable to user interpretation. 

 
Figures 7-8 show a snapshot of the software developed for credit scoring. To 

test the performance of the model, a demo version of the software is available at: 
http://zadeh.cs.berkeley.edu/ (Nikravesh 2001a). Using this model, it is possible to 
have dynamic interaction between model and user. This provides the ability to an-
swer "What if?" questions in order to decrease uncertainty, to reduce risk, and to 
increase the chance to increase a score. 

8.2 University Admissions    

Hundreds of millions of applications were processed by U.S. universities resulting 
in more than 15 million enrollments in the year 2000 for a total revenue of over 
$250 billion. College admissions are expected to reach over 17 million by the year 
2010, for total revenue of over $280 billion.  In Fall 2000, UC Berkeley was able 
to admit about 26% of the 33,244 applicants for freshman admission (University 
of California-Berkeley).  In Fall 2000, Stanford University was only able to offer 
admission to 1168 men from 9571 applications (768 admitted) and 1257 women 
from 8792 applications (830 admitted), a general admit rate of 13% (Stanford 
University Admission). 

 
The UC Berkeley campus admits its freshman class on the basis of an assess-

ment of the applicants' high school academic performance (approximately 50%) 
and through a comprehensive review of the application including personal 
achievements of the applicant (approximately 50%) (University of California-
Berkeley). For Fall 1999, the average weighted GPA of an admitted freshman was 
4.16, with a SAT I verbal score range of 580-710 and a SAT I math score range of 
620-730 for the middle 50% of admitted students (University of California-
Berkeley). While there is no specific GPA for UC Berkeley applicants that will 
guarantee admission, a GPA of 2.8 or above is required for California residents 
and a test score total indicated in the University's Freshman Eligibility Index must 
be achieved.  A minimum 3.4 GPA in A-F courses is required for non-residents. 
At Stanford University, most of the candidates have an un-weighted GPA between 
3.6 and 4.0 and verbal SAT I and math SAT I scores of at least 650 (Stanford 
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University Admission) At UC Berkeley, the academic assessment includes stu-
dent’s academic performance and several measured factors such as: 

 
• College preparatory courses  
• Advanced Placement (AP)  
• International Baccalaureate Higher Level (IBHL)  
• Honors and college courses beyond the UC minimum and degree of 

achievement in those courses  
• Uncapped UC GPA 
• Pattern of grades over time  
• Scores on the three required SAT II tests and the SAT I  (or ACT) 
• Scores on AP or IBHL exams  
• Honors and awards which reflect extraordinary, sustained   intellectual 

or creative achievement 
• Participation in rigorous academic enrichment 
• Outreach programs  
• Planned twelfth grade courses 
• Qualification for UC Eligibility in the Local Context  

 
All freshman applicants must complete  courses in the University of California's 

A-F subject pattern and present scores from SAT I (or ACT) and SAT II tests with 
the following required subjects: 

 

a. History/Social Science - 2 years required 
b. English - 4 years required  
c. Mathematics - 3 years required, 4 recommended  
d. Laboratory Science - 2 years required, 3 recommended 
e. Language Other than English - 2 years required, 3 recommended 
f. College Preparatory Electives - 2 years required 

               
At Stanford University, in addition to the academic trans cript, close attention is 

paid to other factors such as student's written application, teacher references, the 
short responses and one -page essay (carefully read for quality, content, and crea-
tivity), and personal qualities. 
 

The information provided in this study is a hypothetical situation and does not 
reflect the current UC system or Stanford University admissions criteria.  How-
ever, we use this information to build a model to represent a real admissions prob-
lem. For more detailed information regarding University admissions, please refer 
to the University of California-Berkeley and Stanford University, Office of Un-
dergraduate Admission (University of California-Berkeley; Stanford University 
Admission). 

Given the factors and general admission criteria, a simulated-hypothetical 
model (a Virtual Model) was developed. A series of excellent, very good, good, 
not good, not bad, bad, and very bad student given the criteria for admission has 
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been recognized. These criteria over time can be modified based on the success 
rate of students admitted to the university and their performances during the first, 
second, third and fourth years of their education with different weights and 
degrees of importance given for each year. Then, fuzzy similarity and ranking can 
evaluate a new student rating and find it’s similarity to a given set of criteria. 
 

Figure 9  shows a snapshot of the software developed for university admissions 
and the evaluation of student applications. Table 7 shows the granulation of the 
variables that was used in the model. To test the performance of the model, a 
demo version of the software is available at: http://zadeh.cs.berkeley.edu/ (Nik-
ravesh 2001a). Incorporating an electronic intelligent knowledge-based search en-
gine, the results will eventually be in a format to permit a user to interact dynami-
cally with the contained database and to customize and add information to the 
database. For instance, it will be possible to test an intuitive concept by dynamic 
interaction between software and the human mind. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 9. A snapshot of the software for University Admission Decision Ma king. 

 
This will provide the ability to answer "What if?" questions in order to decrease 

uncertainty and provide a better risk analysis to improve the chance for "increased 
success" on student selection or it can be used to select students on the basis of 
"diversity" criteria. The model can be used as for decision support and for a more 
uniform, consistent and less subjective and biased way. Finally, the model could 
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learn and provide the mean to include the feedback into the system through time 
and will be adapted to the new situation for defining better criteria for student se-
lection. 
 

In this study, it has been found that ranking and scoring is a very subjective 
problem and depends on user perception and preferences in addition to the tech-
niques used for the aggregation process which will effect the process of the data 
mining in reduced domain.  Therefore, user feedback and an interactive model 
are recommended tools to fine-tune the preferences based on user constraints. This 
will allow the representation of a multi-objective optimization with a large number 
of constraints for complex problems such as credit scoring or admissions. To solve 
such subjective and multi-criteria optimization problems, GA-fuzzy logic and 
DNA-fuzzy logic models are good candidates.In the case of the GA-Fuzzy logic 
model, the fitness function will be defined based on user constraints. For example, 
in the admissions problem, assume that we would like to select students not only 
on the basis of their achievements and criteria, but also on the basis of diversity 
which includes gender distribution, ethnic background distribution, geophysical 
location distribution, etc. The question will be "what are the values for the prefer-
ences and which criteria should be used to achieve such a goal?"  In this case, we 
will define the genes as the values for the preferences and the fitness function will 
be defined as the degree by which the distribution of each candidate in each gen-
eration match the desired distribution. Fuzzy similarity can be used to define the 
degree of match, which can be used for better decision analysis.  

 
Now, the question will be "what are the values for the preferences and which 

criteria should be used to achieve such a goal?“  
 

• Given a set of successful students, we would like to adjust the prefer-
ences such that the model could reflect this set of students.  

• Diversity, which includes gender distribution, ethnic background distri-
bution, geophysical location distribution, etc. 

 
To solve such subjective and multi-criteria optimization problems with a large 
number of constraints for complex problems such as University Admissions, the 
BISC Decision Support System is an excellent candidate. 

 
 
 

8.3 Date Matching 

The main objective is to find the best possible match in the huge space of possible 
outputs in the databases using the imprecise matching such as fuzzy logic concept, 
by storing the query attributes and continuously refining the query to update the 
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user’s preferences. We have also built a Fuzzy Query system, which is a Java ap-
plication that sits on top of a database. 

With traditional SQL queries (relational DBMS), one can select records that 
match the selection criteria from a database. However, a record will not be se-
lected if any one of the conditions fails. This makes searching for a range of po-
tential candidates difficult. For example, if a company wants to find an employee 
who is proficient in skill A, B, C and D, they may not get any matching records, 
only because some candidates are proficient in 3 out of 4 skills and only semi-
proficient in the other one. Since traditional SQL queries only perform Boolean 
matching, some qualities of real life, like “far” or “expensive” or “proficient”, 
which involve matters of degree, are difficult to search for in relational databases. 
Unlike Boolean logic, fuzzy logic allows the degree of membership for each ele-
ment to range over an interval. So in a fuzzy query, we can compute how similar a 
record in the database is to the desired record. This degree of similarity can be 
used as a ranking for each record in the database. Thus, the aim of the fuzzy query 
project for date matching is to add the capability of imprecise querying (retrieving 
similar records) to traditional DBMS. This makes some complex SQL statements 
unnecessary and also eliminates some repetitious SQL queries (due to empty-
matching result sets). 

 
In this program, one can basically retrieve all the records from the database, 

compare them with the desired record, aggregate the data, compute the ranking, 
and then output the records in the order of their rankings. Retrieving all the re-
cords from the database is a naïve approach because with some preprocessing, 
some very different records are not needed from the database. However, the main 
task is to compute the fuzzy rankings of the records so efficiency is not the main 
concern here. 

 
The major difference between this application and other date matching system 

is that a user can input his hobbies in a fuzzy sense using a slider instead of choos-
ing crisp terms like “Kind of” or “Love it”. These values are stored in the database 
according to the slider value, Figures 10, 11. 
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Figure 10. Date matching input form 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 shows the results are obtained from fuzzy query using the search 
criteria in the previous page. The first record is the one with the highest ranking. 
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The current date matching software can be modified or expanded in several 

ways: 
 

1. One can build a server/client version of date-matching engine so that we 
can use a centralized database and all users around the world can do the 
matching through the web. The ranking part (computation) can still be 
done on local machine since every search is different. This can also help 
reduce the server load. 

2. The attributes, granulation models and the “meaning” of the data can be 
tunable so that the system is more configurable and adaptive to changes. 

3. User preference capability can be added to the system. (The notion of 
“overweight” and “tall” can be different to different people.) 

4. The GUI needs to be changed to meet real user needs. 
5. One can build a library of fuzzy operators and aggregation functions such 

that one can choose the operator and function that matches the applica-
tion. 

6. One can instead build a generic fuzzy engine framework, which is tun-
able in every way to match clients’ needs.  

7. The attributes used in the system are not very complete compared to 
other data matching systems online. However, the attributes can be added 
or modified with some modification to the program without too much 
trouble. 

 
We have added a web interface to the existing software and built the database 

framework for further analysis in user profiling so that users could find the best 
match in the huge space of possible outputs. We saved user profiles and used them 
as basic queries for that particular user. Then, we stored the queries of each user in 
order to “learn” about this user’s preference. In addition, we rewrote the fuzzy 
search engine to be more generic so that it would fit any system with minimal 
changes. Administrator can also change the membership function to be used to do 
searches. Currently, we are working on a new generic software to be developed 
for a much more diverse applications and to be delivered as stand alone software 
to both academia and businesses. 

9 Evolutionary Computing 

In the Evolutionary Computing (EC) module of the BISC Decision Support Sys-
tem, our purpose is to use an evolutionary-based method to allow automatic ad-
justing of the user’s preferences. These preferences can be seen as parameters of 
the fuzzy logic model in form of degrees of importance of the used variables. 
Also, they can be extended to a representation of the way the variables have to be 
combined. In the fuzzy logic model, the variables are combined using aggregation 
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operators with eventually associated weights, which correspond to their degrees of 
importance. These operators and weights can be fixed based on the application 
expert knowledge. However, the application expert might need help to make deci-
sion regarding the choice of the aggregators and the variables’ weighting which 
constitute the model’s parameters. In this case, we are faced with an optimization 
problem and our EC module whose role consists in learning these parameters 
process, has to answer the following question: how to aggregate the variables and 
with which degrees of importance? 
 

In a first stage, we propose to limit user’s preferences to the variables weight-
ing and to use genetic algorithms as learning technique. The corresponding model 
will be a weighted aggregator for which weights have to be determined by the GA. 
However, the fuzzy logic model could need a more complex combination of vari-
ables using weighted multi-aggregation operators. In this case, the learning proc-
ess has to select automatically the appropriate aggregators for a given application 
according to some corresponding training data and to define the way they have to 
be combined. For this purpose, we propose to use a multi-aggregation model com-
bining weighted aggregators in form of decision tree. In the Evolutionary comput-
ing approach, genetic programming, which is an extension of genetic algorithms, 
is the closest technique to our purpose. It allows us to learn a tree structure that 
represents the combination of aggregators. Selection of these aggregators is in-
cluded in the genetic programming based learning process. 

 
Genetic algorithms and genetic programming will be first introduced in the next 

section. Then, their adaptation to our decision system will be described. 

9.1 Genetic algorithms and genetic programming 

Introduced by John Holland (Holland 1992), Genetic Algorithms (GAs) constitute 
a class of stochastic searching methods based on the mechanism of natural selec-
tion and genetics. They have recently received much attention in a number of 
practical problems notably in optimization problems as machine learning proc-
esses (Banzhaf 1998). 

Basic description 

To solve an optimization problem, usually we need to define the search method 
looking for the best solution and to specify a measure of quality that allows to 
compare possible solutions and to find the best one. In GAs, the search space cor-
responds to a set of individuals represented by their DNA. These individuals are 
evaluated by a measure of their quality called fitness function which has to be de-
fined according to the problem itself. The search method consists in an evolution-
ary process inspired by the Darwinian principle of reproduction and survival of the 
fittest individual. 
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This evolutionary process begins with a set of individuals called population.  
Individuals from one population are selected according to their fitness and used to 
form a new population with the hope to produce better individuals (offspring). The 
population is evolved through successive generations using genetic operations un-
til some criterion is satisfied. 

 
The evolution algorithm is resumed in Figure 12.  It starts by creating ran-

domly a population of individuals, which constitute an initial generation. Each in-
dividual is evaluated by calculating its fitness. Then, a selection process is per-
formed based on their fitness in order to choose individuals that participate to the 
evolution. Genetic operators are applied on these individuals to produce new ones.  
A new generation is then created by replacing existing individuals in the previous 
generation by the new ones. The population is evolved by repeating individuals’ 
selection and new generations creation until the end criterion is reached in which 
case the evolution is stopped. 

 
The construction of a GA for any problem can be separated into five tasks: 

• Choice of the representation of the individuals, 
• Design of the genetic operators, 
• Determination of the fitness function and the selection process, 
• Determination of parameters and variables for controlling the evolution 

algorithm, 
• Definition of the termination criterion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 Genetic Algorithm Cycle 
 
In the conventional GAs, individuals’ DNA is usually represented by fixed-

length character strings. Thus in this case, the DNA encoding requires a selection 
of the string length and the alphabet size. Binary strings are the most common en-
coding because its relative simplicity. However, this encoding might be not natu-

Population 
generation 

Fitness 
calcutation 

Selection 

Genetic 
operations 
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ral for many problems and sometimes corrections must be made on the strings 
provided by genetic operations. Direct value encoding can be used in problems 
where use of binary encoding would be difficult. In the value encoding, an indi-
vidual’s DNA is represented by a sequence of some values. Values can be any-
thing connected to the problem, such as (real) numbers. 

Genetic operators 

The evolution algorithm is based on the reproduction of selected individuals in the 
current generation breeding a new generation composed of their offspring. New 
individuals are created using either sexual or asexual reproduction. In sexual re-
production, known as crossover, two parents are selected and DNA from both par-
ents is inherited by the new individual. In asexual reproduction, known as muta-
tion, the selected individual (parent) is simply copied, possibly with random 
changes. 

 
 Crossover operates on selected genes from parent DNA and creates new off-

spring. This is done by copying sequences alternately from each parent and the 
points where the copying crosses is chosen at random.  For example, the new in-
dividual can be bred by copying everything before the crossover point from the 
first parent and then copy everything after the crossover point from the other par-
ent. This kind of crossover is illustrated in Figure 13. for the case of binary string 
encoding. There are other ways to make crossover, for example by choosing more 
crossover points. Crossover can be quite complicated and depends mainly on the 
encoding of DNA. Specific crossover made for a specific problem can improve 
performance of the GA.   

 
Mutation is intended to prevent falling of all solutions in the population into a 

local optimum of the solved problem. Mutation operation randomly changes the 
offspring resulted from crossover.  In case of binary encoding we can switch a 
few randomly chosen bits from 1 to 0 or from 0 to 1 (see Figure 14). The tech-
nique of mutation (as well as crossover) depends mainly on the encoding of 
chromosomes. For example when permutations problem encoding, mutation could 
be performed as an exchange of two genes. 

 
 
 
 
 
 
 
 
 
 
 
Figure 13 Genetic Algorithm - Crossover 
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Figure 14 Genetic Algorithm - Mutation 

Selection process 

Individuals that participate in genetic operations are selected according to their 
fitness. Even though the main idea is to select the better parents in the hope that 
they will produce better offspring, the problem of how to do this selection re-
mains.  This can be done in many ways. We will describe briefly some of them. 
The (µ,λ) selection consists in breeding λ  offspring from µ parents and then µ off-
spring will be selected for the next generation.  In the Steady-State Selection, in 
every generation a few good (with higher fitness) individuals are selected for cre-
ating new offspring. Then some bad (with lower fitness) individuals are removed 
and replaced by the new offspring. The rest of population survives to new genera-
tion.  In the tournament selection, a group of individuals is chosen randomly and 
the best individual of the group is selected for reproduction. This kind of selection 
allows giving a chance to some weak individual in the population, which could 
contain good genetic material (genes) to participate to reproduction if it is the best 
one in its group. Elitism selection aims at preserving the best individuals. So it 
first copies the best individuals to the new population. The rest of the population is 
constructed in ways described above. Elitism can rapidly increase the performance 
of GA, because it prevents a loss of the best-found solution. 

Parameters of GA 

The outline of basic GA is very general. There are many parameters and se t-
tings that can be implemented differently in various problems. One particularly 
important parameter is the population size. On the one hand, if the population con-
tains too few individuals, GA has few possibilities to perform crossover and only a 
small part of search space is explored. On the other hand, if there are too many in-
dividuals, GA slows down. Another parameter to take into account is the number 
of generations, which can be included in the termination criterion. 

 
For the evolution process of the GA, there are two basic parameters: crossover 

probability and mutation probability. The crossover probability indicates how of-
ten crossover will be performed. If there is no crossover, offspring are exact cop-
ies of parents. If there is crossover, offspring are made from parts of both parent's 
DNA. Crossover is made in hope that new chromosomes will contain good parts 
of old chromosomes and therefore the new chromosomes will be better. However, 
it is desirable  to leave some part of the old population to survive into the next gen-

0  1 0 1 1  1 0 1  0  1 0 0  1 1 0  1  

Mutation 
parent child 
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eration. The mutation probability indicates how often parts of chromosomes will 
be mutated. If there is no mutation, offspring are generated immediately after 
crossover (or directly copied) without any change. If mutation is performed, one 
or more parts of a chromosome are changed. 

Genetic programming 

Genetic programming (GP) is a technique pioneered by John Koza (Koza 1992), 
which enables computers to solve problems without being explicitly programmed. 
It is an extension of the conventional GA in which each individual in the popula-
tion is a computer program. It works by using GAs to automatically generate 
computer programs that can be represented as linear structures, trees or graphs. 
Tree encoding is the most used form to represent the programs. Tree structure is 
composed of primitive functions and terminals appropriate to the problem domain. 
The functions may be arithmetic operations, programming commands, mathemati-
cal logical or domain-specific functions. To apply GP to a problem, we have to 
specify the set functions and terminals for the tree construction. Also, besides the 
parameters of the conventional GA, other parameters which are specific to the in-
dividual representation can be considered such as tree size , as an example. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15 Genetic programming - Tree-encoding individual crossover. 
 
Genetic operations are defined specifically for the type of encoding used to rep-

resent the individuals. In the case of tree encoding, new individuals are produced 
by removing branches from one tree and inserting them into another. This simple 
process ensures that the new individual is also a tree and so is also syntactically 
valid. The crossover and mutation operations are illustrated in figures 15-16.  
The mutation consists in randomly choosing a node in the selected tree, creating a 

Chosen node 

parent 1 

child 1 

Crossover 

Chosen node 

parent 2  

child 2 



26      Web Intelligence: Web-Based BISC Decision Support System (WBISC-DSS) 

new individual and replacing the sub-tree rooted at the selected node by the cre-
ated individual. The crossover operation is performed by randomly choosing 
nodes in the selected individuals (parents) and exchanging the sub-trees rooted at 
these nodes, which produce two new individuals (offspring). 

 
 
 
 
 
 
 
 
 

 
 
Figure 16 Genetic programming - Tree-encoding individual mutation 
 

User’s preferences learning using EC 

We have introduced GA and GP in a previous section.  In this section, we will 
proceed to describe their adaptation to our problem. Our aim is at learning the 
fuzzy-DSS parameters which are: 1) the weight vector (representing the user pre f-
erences is associated with the variables) that must be aggregated and, 2) the ade-
quate decision tree (representing the combination of the aggregation operators) 
that have to be used. 

Weights learning using GA 

Weight vector being a linear structure, can be represented by a binary string in 
which weight values are converted to binary numbers. This binary string corre-
sponds to the individual’s  DNA in the GA learning process. The goal is to find the 
optimal weighting of variables. A general GA module can be used by defining a 
specific fitness function for each application as shown in Figure 17. 

 
Let’s see the example of the University Admissions application. The corre-

sponding fitness function is shown Figure 18. The fitness is computed based on a 
training data set composed of vectors N1 x,,x

r
L

r
 of fuzzy values )x,x( ik1i L for 

each ix
r

. Each value of a fuzzy variable is constituted of a crisp value between 0 
and 1 and a set of membership functions. During the evolution process, for each 
weighting vector )w,,w,w( k21 L , the corresponding fitness function is computed 
as follows. Using these weights, a score is calculated for each vector. Afterward, 
these scores are ranked and compared with the actual ranking using similarity 
measure. 
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Figure 17  Evolutionary Computing Module: preferences learning. 
 
Let’s assume that we have N  students and the goal is to select among them 

n  students that will be admitted. Each student is then represented by value vector 
in the training data set. The similarity measure between the computed and the ac-
tual ranking could be the intersection between the n top vectors, which has to be 
maximized. We can also consider the intersection on a larger number nn1>  of 
top vectors. This measure can be combined to the first one with different degrees 
of importance. In this case, the Fitness value will be a weighted sum of these two 
similarity measures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 18  EC Module: Specific fitness function for the “University Admis-

sions Application”. 
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Aggregation tree learning using GP 

We have seen the learning of the weights representing the user preferences re-
garding the fuzzy variables. However, the aggregators that are used are fixed in 
the application or chosen by the user. But it is more interesting to adjust these ag-
gregators automatically. We propose to include this adjustment in the GA learning 
process. 

 
Aggregators can be combined in the form of tree structure, which can be built 

using a Genetic Programming learning module. It consists in evolving a popula-
tion of individuals represented by tree structures. The evolution principle remains 
the same as in a conventional GP module but the DNA encoding needs to be de-
fined according to the considered problem. We propose to define an encoding for 
aggregation trees which is more complex than for classical trees and which is 
common to all considered applications. As shown in Figure 19 , we need to define 
a specific encoding in addition to the fi tness function specification. 

 
We need to specify the functions (tree nodes) and terminals that are used to 

build aggregation trees. Functions correspond to aggregation operators and termi-
nals (leaves) are the fuzzy variables that have to be aggregated. Usually, in GP the 
used functions have a fixed number of arguments. In our case, we prefer not to fix 
the number of arguments for the aggregators. We might however define some re-
strictions such as specifying minimal and maximal number of arguments. These 
numbers can be considered as parameters of the learning process. This encoding 
property allows a largest search space to solve our problem. Moreover, instead of 
finding weights only for the fuzzy variables, we have to fix them also at each level 
of their hierarchical combination, which allows using weighted aggregation opera-
tors in the whole structure. 

 
Tree structures are generated randomly as in the conventional GP. But, since 

these trees are augmented according the properties defined above, the generation 
process has to be updated. So, we decided to randomly generate the number of ar-
guments when choosing an aggregator as a node in the tree structure. And for the 
weights, we chose to generate them randomly for each node during its creation. 

 
Concerning the fitness function, it is based on performing the aggregation op-

eration at the root node of the tree that has to be evaluated. For the university ad-
missions application, the result of the root execution corresponds to the score that 
has to be computed for each value vector in the training data set. The fitness func-
tion, as in the GA learning of the user preferences, consists in simple or combined 
similarity measures. In addition, we can include to the fitness function a comple-
mentary measure that represents the individual’s size, which has to be minimized 
in order to avoid over-sized trees. 

 
 
 



      29 

 
 
 
 

 
 
 
 

 
 
 
 
 
 

 
Figure 19 Evolutionary Computing Module: aggregation tree learning. 

10 Conclusion 

In this study, we introduced fuzzy query and fuzzy aggregation and the BISC de-
cision support system as an alternative for ranking and predicting the risk for 
credit scoring, university admissions, and several other applications, which cur-
rently utilize an imprecise and subjective process.  The BISC decision support 
system key features are 1) intelligent tools to assist decision-makers in assessing 
the consequences of decision made in an environment of imprecision, uncertainty, 
and partial truth and providing a systematic risk analysis, 2)intelligent tools to be 
used to assist decision-makers answer “What if Questions”, examine numerous al-
ternatives very quickly and find the value of the inputs to achieve a desired level 
of output, and 3) intelligent tools to be used with human interaction and feedback 
to achieve a capability to learn and adapt through time. In addition, the following 
important points have been found in this study 1) no single ranking function works 
well for all contexts, 2) most similarity measures work about the same regardless 
of the model, 3) there is little overlap between successful ranking functions, and 4) 
the same model can be used for other applications such as the design of a more in-
telligent search engine which includes the user's preferences and profile (Nik-
ravesh 2001a, 2001b). 

 

Acknowledgement 

Funding for this research was provided by the British Telecommunication (BT) 
and the BISC Program of UC Berkeley. 

 
 
GP module  

 
 

Specific DNA  
encoding  

Optimal 
aggregation tree 

Fuzzy Search 
Engine (FSE) 

Evolutionary Computing(EC) 

Specific 
fitness function 



30      Web Intelligence: Web-Based BISC Decision Support System (WBISC-DSS) 

References 

(Banzhaf et al 1998) Banzhaf, W. (1998) Nordin, P., Keller, R.E. and Francone, F.D., Ge-
netic Programming : An Introduction On the Automatic Evolution of Computer Pro-
grams and Its Applications, dpunkt.verlag and Morgan Kaufmann Publishers, San 
Francisco, CA, USA, 1998, 470 pages. 

(Detyniecki 2000) Detyniecki, M., Mathematical Aggregation Operators and their Applica-
tion to Video Querying, Ph.D. thesis, University of Paris VI, 2000. 

(Fagin 1998) Fagin, R. Fuzzy Queries in Multimedia Database Systems, Proc. ACM Sym-
posium on Principles of Database Systems, 1998, pp. 1-10. 

(Grabisch 1996) Grabisch, M., K-order additive fuzzy measures. In Proc of 6th intl Conf on 
Information Processing and Management of Uncertainty in Knowledge -based Sytems, 
Spain, 1996, pp 1345-50. 

(Grabisch et al 2000) Grabisch, M., Murofushi, T., Sugeno, M. Fuzzy Measures and Inte-
grals:Theory and Applications,  Physica-Verlag, NY, 2000. 

(Holland 1975) Holland, J. H., Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT 
Press, 1992. First Published by University of Michigan Press 1975. 

(Kohonen 1987) Kohonen, T. Self-Organization and Associate Memory, 2nd Edition, 
Springer Verlag., Berlin, 1987. 

(Koza 1992) Koza, J. R. Genetic Programming : On the Programming of Computers by 
Means of Natural Selection, Cambridge, Mass. : MIT Press, USA 1992, 819 pages. 

(Loia 2002) Loia, V. et al., Fuzzy Logic and the Internet, Journal of Soft Computing, 
Special Issue, Springer Verlag, Vol. 6, No. 5; August 2002. 

(Loia et al 2003) Loia, V. et al., "Fuzzy Logic an the Internet", to be published in the Series 
Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer, August 2003. 

(Mizumoto 1989) Mizumoto, M., Pictorial Representations of Fuzzy Connectives, Part I: 
Cases of T -norms, T-conorms and Averaging Operators, Fuzzy Sets and Systems (31): 
pp. 217-242, 1989. 

(Murofushi and Sugeno 1989)  Murofushi, T. and Sugeno, M., An interpretation of fuzzy 
measure and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy 
Sets and Systems, (29): pp 202-27, 1989. 

(Nikravesh 2001a) Nikravesh, M., Perception-based information processing and retrieval: 
application to user profiling, 2001 research summary, EECS, ERL, University of 
California, Berkeley, BT-BISC Project. (http://zadeh.cs.berkeley.edu/  & 
http://www.cs.berkeley.edu/~nikraves/ & http://www-bisc.cs.berkeley.edu/), 2001. 

(Nikravesh 2001b) Nikravesh, M., Credit Scoring for Billions of Financing Decisions, Joint 
9th IFSA World Congress and 20th NAFIPS International Confe rence. IFSA/NAFIPS 
2001 "Fuzziness and Soft Computing in the New Millenium", Vancouver, Canada, 
July 25-28, 2001. 

(Nikravesh 2002) Nikravesh M., Fuzzy Conceptual-Based Search Engine using Conceptual 
Semantic Indexing, NAFIPS-FLINT, June 27-29, New Orleans, LA, USA 2002. 

(Nikravesh and Azvine 2001) Nikravesh, M. and Azvine, B., FLINT 2001, New Directions 
in Enhancing the Power of the Internet, UC Berkeley Electronics Research Laboratory, 
Memorandum No. UCB/ERL M01/28, August 2001.  

 (Nikravesh and Azvine 2002) Nikravesh, M. and Azvine, B., Fuzzy Queries, Search, and 
Decision Support System, Journal of Soft Computing, Volum 6, # 5, August 2002. 



      31 

(Nikravesh and Choi 2003) Nikravesh, M. and Choi, D-Y., Perception-Based Information 
Processing, UC Berkeley Electronics Research Laboratory, Memorandum No. 
UCB/ERL M03/20, June 2003.  

(Nikravesh et al 2003a) Nikravesh, M., Azvine, B., Yagar, R. and Zadeh, L. A. (2003) 
"New Directions in Enhancing the power of the Internet", to be published in the Series 
Studies in Fuzziness and Soft Computing, Physica-Verlag, Springer, August 2003. 

(Nikravesh et al. 2002) Nikravesh, M. et al., Fuzzy logic and the Internet (FLINT), Internet, 
World Wide Web, and Search Engines, Journal of Soft Computing , Special Issue; 
fuzzy Logic and the Inte rnet, Springer Verlag, Vol. 6, No. 5; August 2002. 

(Nikravesh et al. 2003b) Nikravesh, M. et al., Perception-Based Decision processing and 
Analysis, UC Berkeley Electronics Research Laboratory, Memorandum No. UCB/ERL 
M03/21, June 2003. 

(Nikravesh et al. 2003c) Nikravesh, M. et al., Web Intelligence: Conceptual-Based Model, 
UC Berkeley Electronics Research Laboratory, Memorandum No. UCB/ERL M03/19, 
June 2003.  

(Sugeno 1974) Sugeno, M. Theory of fuzzy integrals and its applications. Ph.D. Disserta-
tion, Tokyo Institute of Technology, 1974. 

(Takagi et al. 2002a), Takagi, T.  et al.  Exposure of Illegal Website using Conceptual 
Fuzzy Sets based Information Filtering System,  the North American Fuzzy Informa-
tion Processing Society - The Special Interest Group on Fuzzy Logic and the Internet 
NAFIPS-FLINT 2002, 327-332 (2002a) 

(Takagi et al. 2002b), Takagi, T.  et al: Conceptual Fuzzy Sets-Based Menu Navigation 
System for Yahoo!,  the North American Fuzzy Information Processing Society - The 
Special Interest Group on Fuzzy Logic and the Internet NAFIPS-FLINT 2002, 274-
279 (2002b) 

(Yager 1988) Yager, R. On ordered weighted averaging aggregation operators in multi-
criteria decision making, IEEE transactions on Systems, Man and Cybernetics, (18): 
183-190, 1988. 

 


